JET FLOW AROUND A SPHERE

T, A, Vil'gel'mi

A sphere placed in a slender gas or liquid jet directed vertically upward is held stably in the jet,
but for some relationship of the jet dimensions and the sphere dimension the stability is disrupted and the
sphere is ejected by the jet.

It is of interest to clarify the reason for the stable behavior of the sphere in the jet, determine the
force maintaining the sphere in the stable equilibrium state, and find the magnitude of the ratio of the jet
half-width to the sphere radius for which the sphere is ejected by the jet.

The question of the stability of a sphere in a slender vertical jet in application to the flow about a
circie is examined in [1], where the hypothesis was suggested that the jet branching point and convergence
point lie on the same diameter. Without this sort of hypothesis the problem does not have a unique solution
within the framework of ideal fluid theory.,

Jet flow about blunt bodies, particularly the sphere, was examined in [2], where flow past bodies
whose dimensions exceeded the dimensions of the nozzle was studied at distances up to 30-40 body
diameters from the initial section of the jet. It was established experimentally that there is separation-
free flow over a distance up to 8-10 calibers. I is assumed that the separation—free flow in this region is
due to branching of the jet into two narrow semibounded jets, As a result of the pressure difference which
develops (atmospheric at the outer edge, low pressure at the surface of the body) the jets press close to
the surface of the sphere and flow past the surface without separation [3].

In the present study we examined the nature of the flow about a sphere supported in a vertical axi-
symmetric jet for the case of central flow. The sphere diameters are 74 and 37 mm. The nozzle
dimensions vary in the range from 6 to 74 mm,

Generally speaking, the velocity field behind the sphere is defined by four parameters: approaching
flow velocity, nozzle radius, body dimension, and distance from the nozzle exit to the section where the
front point of the sphere is located. By virture of the affine nature of the velocity profiles at different
sections of the free jet [4], we can take as the characteristic jet width the quantity Y, which is the distance
from the axis to the point at which the velocity equals half the axial velocity at the given section.

The experimental results show that the nature of the flow in the wake behind the body in the immediate
vicinity of the sphere (0.054 calibers) depends on the ratio Y/R. The value of Y is taken at the section
where the frontal point of the sphere is located, and R is the sphere radius,

If Y/R < 1 the flow past the body is separation~free, and the velocity profile has the form shown in
Fig. 1 (curve 1) for Y/R = 0,485, With increasing distance from the body, the profile flattens out and at
a distance of 0.5 caliberissimilar to the free jet velocity profile. If Y/R > 1 the profile has the form
shown in Fig, 1a (curve 2) for Y/R = 1,19. A reverse flow zone is observed, In this case the dimensions
of the recirculation zone increase with increase of Y/R, approaching the dimensions of the zone for wniform
flow past the body.

The velocity profile behind the sphere becomes universal for the different nozzles if Y/R = const
(Fig. la, curves 1 and 2),

Change of the initial velocity of the approaching stream in the range from 25 to 75 m/sec does not
alter the flow pattern for constant Y/R.
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The kinematics of the motion was investigated and it was found that the flow pattern depends
essentially on a single parameter, It is natural to suppose that the dynamics of the motion also depend
on this parameter. Experiments with a suspended sphere make it possible to determine easily the sphere
drag force, which equals its weight. Using the technique of aerodynamic suspension of the sphere without
scales and taking the flow velocity equal to the average velocity at the section where the sphere is sus-
pended, we obtain the sphere drag coefficient

= 8mg / nd?pi?

Here m = sphere mass, d = sphere diameter, v = average velocity, p = gas density, and g = gravity
acceleration; ¢ depends on the dimensionless parameter Y/R,

The drag coefficient is small for Y/R < 1, With increase of this parameter, ¢ increases mono-
tonically, approaching the value of ¢ for uniform flow past a sphere (Fig. 1b). In this case the sphere
becomes unstable in the jet and is ejected. It was not possible to establish exactly the value of Y/R for
which this phenomenon is observed. The approximate value of the ratio is 2,5-3,0.

Variation of the Reynolds number NRg in the range 6.7 ° 104— 2,0+ 10° has very little effect on the
drag coefficient, which remains practically constant in this N, range if Y/R = const.

Now let the axis of the slender jet be shifted relative to the center of the sphere. Then the ideal
fluid flow pattern in the vicinity of the jet convergence point must be symmetric to the flow pattern in the
jet splitting zone, The jet is deflected by the sphere through some angle, and a stabilizing force directed
toward the jet axis is developed which returns the sphere to the stable equilibrium state, The angles
of deviation of the jet axis from the vertical behind the sphere for noncentral flow past the sphere (Fig, 1d)
were determined experimentally.

If the jet axis passes through the center of the immersed circle, the point of convergence is on the
same diameter as the point where the jet branches, It is natural to suppose that, just as in the case of
central flow, in the first approximation we can assume that the stagnation points are located on the same
diameter if the jet axis is shifted relative fo the center of the sphere [1]. The hypothesis of [1] is
confirmed by experiments (Fig. 2).

The noted experimental facts, together with the hypothesis of [1], make it possible to construct a
model for flow past a sphere which admits approximate calculation. Use of momentum theory makes it
possible to find the force which returns the sphere to the stable equilibrium state. It is necessary to
know the angle of jet axis deviation from the vertical behind the sphere for noncentral flow about the sphere
and the radius of the converging jet,

The hypothesis of [1] makes it possible to find the angle of jet axis deviation from the vertical,

Let us examine the case of slender jet flow around a circle, To find the deviation it is necessary
to estimate the distance of the flow branching point from the jet axis. To this end we examine the impact
of a jet on a flat plate [5]. For small width of the jet relative to the sphere diameter, in the vicinity of the
splitting point we can take the adjacent circular arc to be a straight line tangent to the sphere surface at
the point of intersection with the jet axis.
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In this analysis the distance between the flow convergence point and
the axis can be written in the form

[ =2.3 pd,, p =1 m—a (1)

where dj = jet diameter, and o = inclination of jet axis to the surface,

This expression is valid for small angles B. Moreover, it follows from the
reversibility of the motion that the flow in the vicinity of the point of jet
convergence behind the body must be symmetric to the flow in the jet
splitting zone; thereby the flow will be symmetric about some straight line
which passes through the center of the circle and is perpendicular to the
diameter drawn through the stagnation points,

Taking the hypothesis of [1] as the basic assumption and using (1),
we can calculate the angle of deviation of the jet axis from the vertical:

=2 [arc sin (b ] R) — arc tg (I ] R)] @)
. s Here h = shift of jet axis relative to the center of the circle, R =
3 % 5‘; X Y- radius of the wetted circle, I = distance from the jet axis to the branching
r, 7 ‘ . point along an arc of the wetted surface, and » is the deviation of the jet
. ! axis from the vertical.
Fig. 3

The geometric pattern is not entirely acceptable for proper deter-

mination of the force acting on the sphere, since the viscosity forces cause
the leaving jet to be wider than the initial jet. For quantiative estimates it is necessary to account for
thickening of the jet. We express the radius of the leaving jet through the initial values: vy, vy, vand R
(initial jet radius, approaching flow velocity, kinematic viscosity, and sphere radius). We shall use
boundary layer theory. For slender jet flow about a circle the free surfaces of the bifurcated jet can be
taken as circles of radius close to the radius of the immersed surface. In the present case the velocity
at the outer edge of the boundary layer will be an unknown quantity and therefore we must add to the
boundary layer equations the constant discharge equation. The system of equations in the s,n coordinates
(s is the longitudinal coordinate along the contour, n is the transverse coordinate, reckoned along the
normal to the profile) takes the form

9y, Oy 62728 v L)
Bty =V 5t =00 @
8
G = 2n R sin '—;—Svs dn 4)
0
Using the identity w ey o
s __ mns n
U"TQ—IT - an Vs on
we transform the first equation (3) to the form
v ? d(v,v,) %
7 e 2

We introduce the notation n/é =7, where & is the thickness of the thin jet flowing over the circle.

We integrate (5) .

d & o
ﬁSden: Y ®)
0

We express the velocity in the form
v, =an + b -+ et , 0% /0 =0 for M =0, b =0
We find the coefficient ¢ from the boundary conditions
¢ =—";a, 100, ]l =0, v, =a(m— ;0%

. Assuming the velocity at the point sy equal to the initial velocity v(sg) = vy, sq ®1q, We write g(sg) =
/v (Fig. 3).
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The problem reduces to findinga and J, for which we have two equations, obtained from (6) and (4)
by substitution of the expression for vg

1
d 1 5\?
T A 0
0
1
2nR sin %GaS(n — %7?) dn=G (8)
o )
or
d Aa k 3 315vR 6G
H@)=—5, d=gFn . =2 —E =k g5p=
Excluding 6, we find
d ka }\'tﬁsinx
dr sinz k

After some transformations we obtain the differential equation

dy 2:3 . a A
7 —m"’"-“ﬁ)

It has the solution
1]y =m (Ys cos® £ — cos x) + C
Satisfying the initial condition a(xg) = 3/2 vy, Xg = 8¢/R, we find a

o sinz
T m(Yscos®x — cos ) + 3 ((so/ o R + m)

a

Consequently, .
sin zp

o = m(1/3 cos® xy — c0S 1'1) + 2/-3 ((Sn/ UQR) -+ m)

Assuming that xy = T — x, for small x,, where x; ~r(/R ~s,/R, 1y is the final jet radius,we find a,
in the form o

N = T Tm T 5o/ veR)

The discharge for the initial section of the jet is expressed as G = 7TR02V0, for the final section G =
WRZXZZ Y. 3@¢. On the basis of the constant discharge condition, we equate these two expressions and find
the value of the final jet radius in terms of the initial parameters

6.45vR4\"
o= (4 2 0

Applying the momentum conservation theorem and using (2) and (9), we calculate the jet reaction
for noncentral flow about a sphere

~

Spvvndc =F

The force acting to return the sphere to the equilibrium state, directed along the x axis, is expressed
as
Fyp = mpro?vy? (ry / r1)? sin »

The drag force of the sphere in the jet is
Fy = mpre? vg? [1 — (ry [ 1y) 2
The drag coefficient, calculated using the formula
L —=8F,] p vy® aud?

for the slender jet coincides with the experimental values. The calculated data for the deviation of the jet
axis from the vertical and the stabilizing force for different deviation angles agree quite well with the
experimental data (Fig. lc and d).

The author wishes to thank M. A. Gol'dshtik for his assistance in carrying out this study,
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